LESSON 6.2

LEARNING GOALS

Evaluating Polynomials

- 1) Determine if a function is a polynomial function or not.
- 2) Identify the degree, type, leading coefficient, constant term, and standard form of a polynomial function
- of a polynomial function.
 3) Evaluate a polynomial function using Direct Substitution.
- 4) Evaluate a polynomial function using Synthetic Substitution.

Common Core State Standards HSF-IF.A.2

LESSON 6.2 - Evaluating olynomial Functions

FUNCTIONS WE ARE ALREADY FAMILIAR WITH:

Degree	Туре	Standard Form	Example
0	Constant	$f(x) = a_0$	<i>y</i> = 6
1	Linear	$f(x) = a_1 x + a_0$	y = 7x + 6
2	Quadratic	$f(x) = a_2 x^2 + a_1 x + a_0$	$y = 2x^2 + 7x + 6$

NEW COMMON POLYNOMIAL FUNCTIONS:

Degree	Туре	Standard Form	Example		
3	Cubic	$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$y = 4x^3 + 2x^2 + 7x + 6$		
4	Quartic	$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$y = 2x^4 + 4x^3 + 2x^2 + 7x + 6$		
5	Quintic	$f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$y = x^5 + 2x^4 + 4x^3 + 2x^2 + 7x + 6$		
and so on					

A polynomial function is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

such that the following properties are true:

- $a_n \neq 0$ (the leading coefficient cannot be equal to 0. However, other coefficients may be equal to 0.)
- All exponents are whole numbers (they cannot be negative, nor can they be fractions/decimals).
- All coefficients are real and rational (they cannot be imaginary, nor can they be non-repeating, non-terminating decimals).

A polynomial function is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

- *a_n* is called the **LEADING COFFFICIENT**
- a_0 is called the **CONSTANT TERM**
- *n* is called the **DEGREE**
- A polynomial function is in **STANDARD FORM** if its terms are written in descending order of exponents from left to right.

Determine if each function is a polynomial function or not.

A)
$$f(x) = 2x^3 + 3x^2 - 7x + 10$$
 YES

B)
$$f(x) = \sqrt{7}x^2 - 5x + \pi$$

C)
$$f(x) = 3x^5 + 9x^2 - x$$
 YES

D)
$$f(x) = 5x^{4} + 8x^{3} - x^{2} + 6x - 11$$

E)
$$f(x) = 60 - 4x^5 + 7$$

State the degree, type, and leading coefficient of each polynomial function.

A)
$$f(x) = 2x^3 - 9x^2 + 8x - 1$$

B)
$$f(x) = -3x - 7$$

C)
$$f(x) = x^2 - 5x + 6$$

State the degree, type, and leading coefficient of each polynomial function.

D)
$$f(x) = 4$$

DEGREE: O TYPE: constant LC: 4

E)
$$f(x) = 10x^5 + 7x^2 - 4x + 3$$

F)
$$f(x) = -8x^4 + 11$$

Rewrite the polynomial function in Standard Forn

A)
$$f(x) = 6x + 7x^3 - 5 + x^2$$

$$f(x) = 7x^3 + x^2 + 6x - 5$$

B)
$$f(x) = 8 - x^5 + 4x^3 + 10x^2$$

$$f(x) = -x^5 + 4x^3 + 10x^2 + 8$$

C)
$$f(x) = x - 2x^3 + 9x^4$$

$$f(x) = 9x^4 - 2x^3 + x$$

EVALUATING A POLYNOMIAL FUNCTION FOR A GIVEN VALUE OF

- To **EVALUATE A FUNCTION** means to calculate the value of the function at a certain number.
- In other words, plug in a number for *x*, and solve.
- There are two methods for evaluating functions:

Method 1: Direct Substitution

Plug the given value of *x* into the function everywhere you see an *x*, then simplify.

Method 2: Synthetic Substitution

An easier way to evaluate larger functions.

Use Direct Substitution to evaluate the polynomial for the given value of.

$$f(x) = 2x^4 - 8x^2 + 5x - 7$$
 for $x = 3$

$$f(3) = 2(3)^4 - 8(3)^2 + 5(3) - 7$$

$$f(3) = 2(81) - 8(9) + 15 - 7$$

$$f(3) = 162 - 72 + 15 - 7$$

METHOD 2: Synthetic Substitution

STEP 1:Draw a large/long L

STEP 2: Write the coefficients along the top

NOTE: If there are any terms missing from the polynomial, write a 0 in that term's place.

STEP 3:Write the given value of *x* on the left outside

STEP 4:Drop the first coefficient down and write it in the first spot under the L.

STEP 5:Multiply the given value of *x* by that first coefficient. Write the answer inside the L under the second coefficient.

STEP 6:Add the second coefficient and the answer from Step 5. Write the answer in line with those two numbers under the L.

STEP 7:Repeat this process until you run out of coefficients. The last number you write under the L (in line with the last coefficient) is the answer.

Use Synthetic Substitution to evaluate the polynomial for the given value of.

$$f(x) = 2x^4 - 8x^2 + 5x - 7$$
 for $x = 3$

6.2 NOTES - Evaluating Polynomial Functions

Use Direct Substitution to evaluate the polynomial for the given value of.

$$f(x) = 2x^3 + 5x^2 + 4x + 8$$
 for $x = -2$

$$f(-2) = 2(-2)^3 + 5(-2)^2 + 4(-2) + 8$$

$$f(-2) = 2(-8) + 5(4) - 8 + 8$$

$$f(-2) = -16 + 20 - 8 + 8$$

Use Synthetic Substitution to evaluate the polynomial for the given value of.

$$f(x) = 2x^3 + 5x^2 + 4x + 8$$
 for $x = -2$

Use Direct Substitution to evaluate the polynomial for the given value of.

$$f(x) = 5x^4 - 6x^3 - 7x^2$$
 for $x = 3$

$$f(3) = 5(3)^4 - 6(3)^3 - 7(3)^2$$

$$f(3) = 5(81) - 6(27) - 7(9)$$

Use Synthetic Substitution to evaluate the polynomial for the given value of.

$$f(x) = 5x^4 - 6x^3 - 7x^2$$
 for $x = 3$

Use Direct Substitution to evaluate the polynomial for the given value of.

$$f(x) = 2x^3 - x^4 + 5x^2 - 4 - x$$
 for $x = 4$

$$f(4) = 2(4)^3 - (4)^4 + 5(4)^2 - 4 - 4$$

$$f(4) = 2(64) - 256 + 5(16) - 4 - 4$$

$$f(4) = 128 - 256 + 80 - 4 - 4$$

$$(f(4) = -56)$$

Use Synthetic Substitution to evaluate the polynomial for the given value of.

$$f(x) = 2x^3 - x^4 + 5x^2 - 4 - x$$
 for $x = 4$

6.2 NOTES - Evaluating Polynomial Functions

Use Direct Substitution to evaluate the polynomial for the given value of.

$$f(x) = x + \frac{1}{2}x^3$$
 for $x = 4$

$$f(4) = 4 + \frac{1}{2}(4)^3$$

$$f(4) = 4 + \frac{1}{2}(64)$$

Use Synthetic Substitution to evaluate the polynomial for the given value of .

$$f(x) = x + \frac{1}{2}x^{3} \text{ for } x = 4$$

$$4 \quad \begin{array}{c|cccc} \frac{1}{2} & 0 & 1 & 0 \\ & 2 & 8 & 36 \\ \hline & \frac{1}{2} & 2 & 9 & 36 \end{array}$$

HOMEWORK:

6.2 Worksheet - Evaluating Polynomials