Solving Right Triangles Common Core State Standards HSG-SRI.D.9, HSG-SRI.D.10, HSG-SRI.D.11

LESSON 12.2 - Solving Right Triangles

- Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs.
- To **SOLVE A RIGHT TRIANGLE** eans to determine the measures of all six parts.
- You can solve a right triangle if you know either of the following:
 - 1) One side length and one acute angle measure
 - 2) Two side lengths.

- We learned yesterday that we can use the side lengths of a right triangle to find trigonometric ratios for the acute angles of the triangle.
- Today we will learn that once you know the sine, cosine, or tangent of an acute angle, you can use a calculator to find the measure of the angle.

In general, for the acute angle A:

- if $\sin A = x$, then $\sin^{-1}x = m$ A
- if $\cos A = y$, then $\cos^{-1}y = m$ A
- if $\tan A = z$, then $\tan^{-1}z = m$ A

A is an acute angle. Use a calculator to approximate the measure of A to the nearest tenth.

A)
$$\sin A = 0.35$$
, so... $m A = 20.5^{\circ}$

B)
$$\cos A = 0.64$$
, so... $m = A = 50.2^{\circ}$

C)
$$\tan A = 2.07$$
, so... $m A = 64.2^{\circ}$

Solve the right triangle. Round decimals to the nearest tenth.

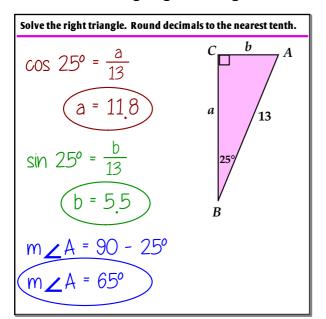
$$tan A = \frac{3}{2}$$

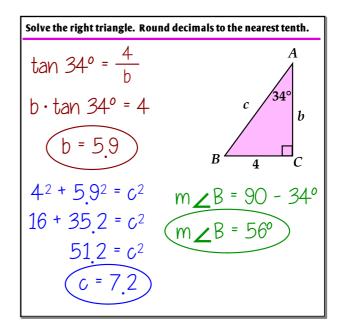
tan A = 1.5

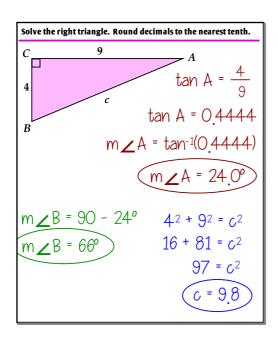
 $m \angle A = tan^{-1}(1.5)$

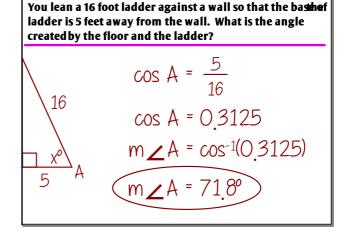
$$2^2 + 3^2 = 0$$

$$4 + 9 = 6^2$$

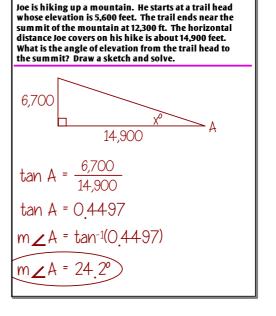

$$m \angle B = 90 - 56.3^{\circ}$$


$$13 = c^2$$


$$cos A = \frac{8}{9.2}$$
 $cos A = 0.8696$
 $m \angle A = cos^{-1}(0.8696)$
 $m \angle A = 29.6^{\circ}$
 $a^{2} + 8^{2} = 9.2^{2}$
 $a^{2} + 64 = 84.64$
 $a^{2} = 20.64$
 $a^{2} = 4.5$


Solve the right triangle. Round decimals to the nearest tenth.

12.2 NOTES - Solving Right Triangles



10 feet off the ground. Help Kobe figure out what the anglof elevation is from the floor to the backboard. $tan \ K = \frac{10}{15}$ $tan \ K = 0.6667$ $m \angle K = tan^{-1}(0.6667)$ $m \angle K = 33.7^{\circ}$

Kobe is standing at the free throw line, which is 15 feet in

front of the backboard of the basketball hoop. The hoop i

12.2 NOTES - Solving Right Triangles

HOMEWORK:
12.2 Worksheet - Solving Right Triangles